台中市南屯區工業 24 路 29 號 TEL: 886-4-23501155(代表) FAX: 886-4-23507373 E-mail: anvictor@ms45.hinet.net 網站: www.twanfong.com

ES 型聚苯胺導電高分子 BM 1720

規格:

摻雜物(dopant) : DNNSA

外觀 : 深祖母綠色

固成份(200°C×30 分鐘) : **50%**

分子量: MP=55000 / Mn=43000 / Mw=66000

多分散度(polydispersity) : 1.52

導電度 : 1×10~5 S/cm 或 10 S/cm

溶劑 :甲苯

溶解性:可溶於二甲苯、甲苯、NMP、氯仿、氯乙酸

不溶於水、丙酮、異丙醇

化學結構 : DNNSA 摻雜聚苯胺鹽(emeraldine salt, PANI-ES)

$$\begin{bmatrix} H \\ N \\ A \end{bmatrix}$$

$$HA = \begin{bmatrix} C_9H_{19} \\ SO_3H \\ (DNNSA) \end{bmatrix}$$

$$(DNNSA)$$

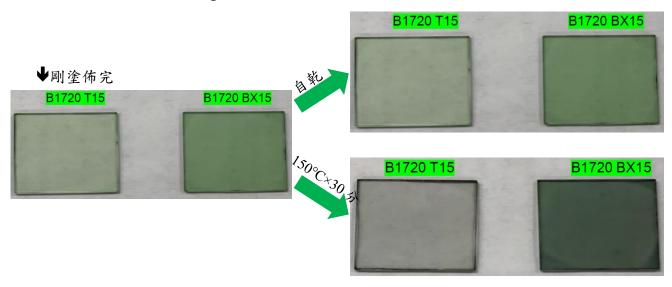
特性:

- 1.聚苯胺(PANI)是一種經過充分研究的導電高分子,本身具有高導電度。在導電高分子中,**PANI 是相當獨特的,因為其導電度是可逆受控的**。然而,大部分的 PANI 難溶於常見溶劑,進而限制了其應用範疇。
- 2.BM 1720 是一支溶劑為甲苯的高品質、高階產品,已商業化生產,在開發能夠耗散 靜電位的材料以及**導電材料、塗料和復合材**方面具有廣泛的應用。

應用:

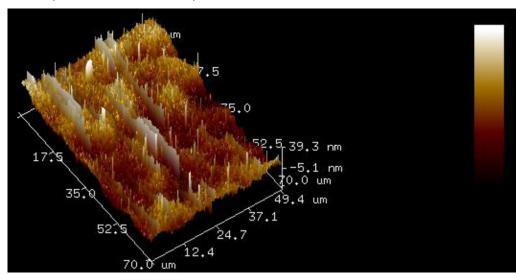
- 1.PANI 的商業應用包含靜電耗散、防鏽塗料、充電式電池、各種電子產品、感測器、有機太陽能電池(organic photovoltaics)和分離膜。
- 2.建議開稀方式: ①用甲苯開稀成 15w/w%(T15) ②用乙二醇單丁醚/臨二甲苯=1/1 開稀成 15w/w%(BX15)。

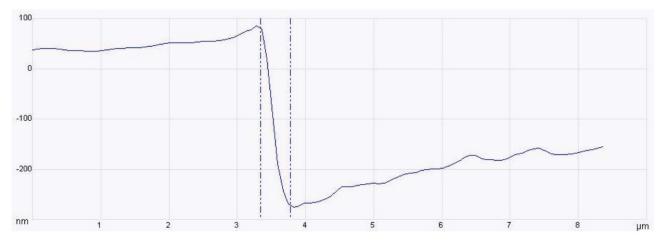
旋轉塗佈(spin coating)應用於玻璃板:


將BM 1720 開稀後(T15 及BX15)以旋轉塗佈方式應用於玻璃

- 1.玻璃底材尺寸:1吋x1吋,40e/a
- 2.清潔過程包含 5 步驟,皆以超聲波處理:去離子水→肥皂水→去離子水→丙酮→乙醇

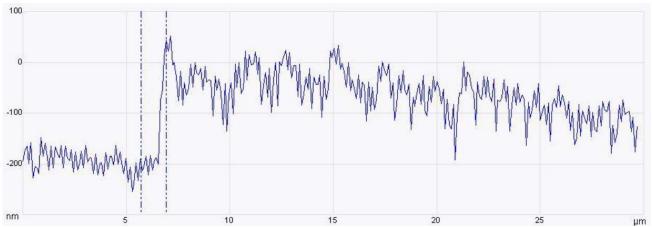
台中市南屯區工業 24 路 29 號 TEL: 886-4-23501155(代表) FAX: 886-4-23507373 E-mail: anvictor@ms45.hinet.net 網站: www.twanfong.com


3.溶液總體積: 0.3mL


4.操作條件:3500rpmx30 秒,然後自乾或烘烤 150℃x30 分鐘

5.表面型態和膜厚(原子力顯微鏡, AFM)

• T15 經烘烤 膜厚 350nm 表面粗糙



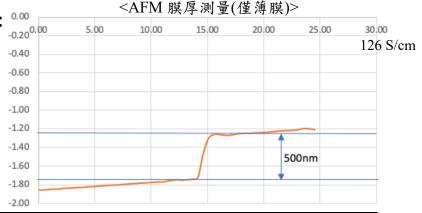
台中市南屯區工業 24 路 29 號 TEL: 886-4-23501155(代表) FAX: 886-4-23507373 E-mail: anvictor@ms45.hinet.net 網站: www.twanfong.com

• BX15 經烘烤 **膜厚 160nm** 表面平整

二次掺雜(Doping)提高導電性:

1.以甲苯開稀成 15%

2.烘烤條件:150°C×30 分鐘


3.二次掺雜:

-薄膜摻雜 / PTSA-Am

- 氣相摻雜 / 百里酚(thymol)

- 氣相摻雜+薄膜摻雜

4. 測試結果:

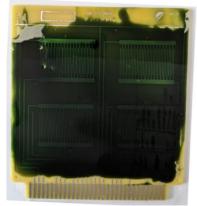
二次	慘雜	表面電阻(Ω)	AFM 膜厚(μm)	導電度(S/cm)
無	Batch I	5.8M	2.3 (2500rpm×30 秒)	7.5×10 ⁻⁴
	Batch II	3.4M	2.6 (2000rpm×30 秒)	1.14×10^{-3}
薄膜摻雜	Batch I	159	0.5	126
	Batch II	675	0.92	16.1
氣相摻雜	Batch I	23.1K	0.4	1.08
	Batch II	65.1K	0.26	0.59
氣相摻雜 +薄膜摻雜	Batch I	458	0.37	59
	Batch II	121	0.32	238

台中市南屯區工業 24 路 29 號 TEL: 886-4-23501155(代表) FAX: 886-4-23507373 E-mail: anvictor@ms45.hinet.net 網站: www.twanfong.com

可控電阻保形塗層(Controlled Resistance Conformal Coatings, CRCC):

1.規格及目標:

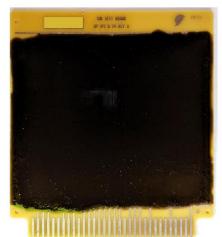
2010/2011	
製備	將所需量的 PANI-DNNSA/甲苯溶液加入到基礎聚合物的未固
	化樹脂中並混合均勻,然後添加建議量(基礎聚合物)的催化劑
	來催化混併導電聚合物基聚合物樹脂的聚合反應。
應用方式	噴塗或流塗(flow)於製品的邊角
固化條件	約 70℃×8 小時
膜厚	100~200 μm
電阻率	$10^9 \sim 10^{11} \Omega$ -cm
外觀	無可見的顆粒,綠色透明,乾燥後不回黏
Pot life	8小時
熱穩定性	約 110℃×1 週
ASTM E595	NASA 脫氣要求,總質量損失<1%,濃縮揮發物含量<0.1%
Tg	<-60°C


2. 基礎 PU 樹脂 Conathane CE-1155:

- 2K PU 系統,符合電器絕緣印刷電路組件的 MIL-1-46058C 規範
- 25℃、膜厚 2mils (50.8 2m)時,絕緣電阻>2.5×10¹³ Ω
- 容積電阻率為 1.2×10¹⁶ **Ω**-cm
- 25℃ 時 Pot life 為 6 小時
- 固化條件為 25℃x5~7 天或 60℃x3 小時或 100℃x1 小時

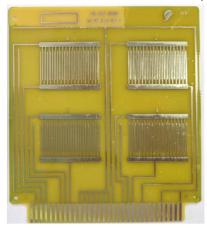
3.導入 PANI-DNNSA 的優勢:

- 提升基礎 PU 樹脂的導電性。
- •助劑(磷酸酯分散劑)可加入 PU 系統中來穩定 PANI 並避免產生顆粒或團聚沉澱。
- 加入不同量的甲苯來調整系統黏度,適用各種應用方式(例如:噴塗、浸塗、刷塗等)。


4.將 CRCC 以滴落塗佈(dropcast)的方式應用於 IPC 標準測試板(3.5%):

Cell	A	В	С	D
電阻(k Q)	268	403	283	858
電導(S)	3.73×10 ⁻⁶	2.48×10 ⁻⁶	3.53×10 ⁻⁶	1.17×10 ⁻⁶
膜厚(μm)	149	152	192	240
導電度(S/cm)	5.17×10 ⁻⁸	3.29×10 ⁻⁸	2.95×10 ⁻⁸	6.23×10 ⁻⁹
電阻率(Ω -cm)	1.93×10 ⁷	3.04×10^7	3.39×10 ⁷	1.61×10 ⁸

台中市南屯區工業 24 路 29 號 TEL: 886-4-23501155(代表) FAX: 886-4-23507373 E-mail: anvictor@ms45.hinet.net 網站: www.twanfong.com


5.將 CRCC 以滴落塗佈(dropcast)的方式應用於 IPC 標準測試板(1%):

Cell	A	В	С	D
電阻(M Ω)	28	95	98	146
電導(S)	3.57×10 ⁻⁸	1.05×10 ⁻⁸	1.02×10 ⁻⁸	6.85×10 ⁻⁹
*膜厚(µm)	183	183	183	183
導電度(S/cm)	3.28×10 ⁻¹⁰	9.68×10 ⁻¹¹	9.38×10 ⁻¹¹	6.30×10 ⁻¹¹
電阻率(Ω -cm)	3.05×10 ⁹	1.03×10 ¹⁰	1.07×10^{10}	1.59×10^{10}

^{*}根據之前的滴落塗佈 CRCC 測試板所估算。

6.將 CRCC 以旋轉塗佈(spincoat)的方式應用於 IPC 標準測試板:

Cell	A	В	С	D
電阻(M Ω)	129	87.5	85.3	68.2
電 導(S)	7.70×10 ⁻⁹	11.42×10 ⁻⁹	11.73×10 ⁻⁹	14.67×10 ⁻⁹
膜厚(μm)	10	10	10	10
導電度(S/cm)	9.24×10 ⁻¹⁰	1.49×10 ⁻⁹	1.2×10 ⁻⁹	1.26×10 ⁻⁹
電阻率(Ω -cm)	1.08×10 ⁹	6.70×10^8	8.33×10 ⁸	7.92×10^8

7.總結:

- 黏度可控的流動性配方可適用各種應用方式。
- 穩定的配方,不含可能導致短路的可見顆粒。
- 藉由調整加入 PU 中的 PANI 量來配製符合目標電阻的 CRCC 混合液。
- 比基礎 PU 有更低的電阻 10%~1010Ω-cm。

注意:此為一指導性資料,並不具有約束力,我們建議使用者能在使用之前做有必要的測試,不要把它當做一種直接的替代品,如此才能確保產品適合於指定的應用。